FLOOD FIGHTING AND SURVEILLANCE

Larry Boardman, P.E.
Civil Engineer
USACE, Omaha District
12 March 2019

"The views, opinions and findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."
AGENDA

- LEVEE DESIGN CONSIDERATIONS
- COMMON FAILURE MODES
- SURVEILLANCE/INSPECTION
LEVEE DESIGN CONSIDERATIONS

- Overtopping Resistance
- Through Seepage
- Underseepage
- Slope Stability
- Streambank Erosion Protection
Random Fill or Clay Core

Through Seepage Control:
• Compacted Clay Riverside Face

Underseepage Control
• Cutoff Trench
• Landside Underseepage Berm
• Relief Wells and Toe Drains

Erosion Control:
• Topsoil and Vegetative Cover
• Riprap Erosion Control – River Bank and Levee Face
UNDERSEEPAGE CONTROL – RELIEF WELLS

Seepage Berm

Intended to provide a controlled method to relieve high underseepage pressures without piping foundation materials. Located at toe of berm or levee.

Relief Wells

Screens

Screen slot sizes and the gravel pack are designed to prevent the movement of foundation materials into, and clogging, the RW.
POTENTIAL FAILURE MODES

- Overtopping
- Through Seepage/Piping
- Underseepage/Piping

OVERTOPPING

SEEP

SEEPAGE

UNDERSEEPAGE

- Overtopping
- Through Seepage/Piping
- Underseepage/Piping

SAND BOIL

- Slope Failure
- Riverside Erosion
OVERTOPPING

- Common locations for overtopping:
 - Low areas created by vehicle traffic such as access ramps
 - Low areas created by post-construction foundation settlement

- Levees with sand cores will not resist much overtopping

- Levees with clay cores are much more resistant to overtopping but will eventually fail with sustained overtopping
OVERTOPPING (R613 AND R616 SAND BAG LEVEE RAISES)
OVERTOPPING (L550 – NORTH OF HWY 136)
THROUGH SEEPAGE
CONTRIBUTING FACTORS INCLUDE:

• Areas with a Thin Compacted Clay Layer on the Riverside Slope – Sand Core Levees

• Animal Burrows that Extend Through the Compacted Clay Layer

• Levee Penetrations

• Culvert Joint Separations
THROUGH SEEPAGE / PIPING

Water Side
Levee
Inertious (clay) layer
Burrows

Land Side
Water exiting on levee slope

Animal Burrows - Beavers and Badgers

Rodent Hole

Rodent Caught in the Act
Conduits (drainage structures / pump stations / utilities), or other levee penetrations (e.g., floodwalls) can create potential weak areas in a levee. Due to compaction difficulties, there is the potential for seepage and piping of embankment material along exterior of conduits, or into conduit joint separations.
PIPING AT LEVEE PENETRATIONS

L624-627 – INDIAN CREEK

DESIGN APPROVED: 2014
CONST. COMPLETE: FALL 2015
SINKHOLES IDENTIFIED: SPRING 2016
THROUGH SEEPAGE / PIPING
Geological cross section – Historic River Meanders
Lack of an Adequate Riverside Natural Blanket
Lack of an Adequate Landside Natural Blanket (Thickness and/or composition)
Damaged Blanket from Erosion
Damaged Blanket from Encroachments – Riverside or Landside Excavations for Drainage Ditches, Borrow Site Locations, Quarries, Building Foundations, etc.
Inefficient Relief Wells or Toe Drains
UNDERSEEPAGE / PIPING

Sand Boils with movement of foundation material

Pipe Development (Movement of Material)

Sand Boil

Water Flow

Seepage/Piping

Floodwater

Levee Failure
Sand Boils
UNDERSEEPAGE / PIPING (L550)
SLOPE FAILURES

Landslide Slope Failure

Riverside Slope Failure
*Most Common

Note stakes and flagging
SLOPE FAILURES
RIVERSIDE EROSION
AREAS OF CONCERN

- Riverside Ramps
- Riverside Levees
- Riverside Fences
- Historic Borrow Pits
- Levee Alignment / Floodplain Geometry
- Trees / Restrictions
STREAMBANK EROSION
(L575 – NISHNABOTNA RIVER)
SURVEILLANCE / INSPECTIONS
IN-HOUSE FLOOD SURVEILLANCE TEAMS

- Report to EOC
- Project Assignments
- Partnered for safety and efficiency
- Participate in pre- and post-day hand off meetings
- Briefed on the current & forecasted flood situation
SURVEILLANCE REFERENCES

- Operations and Maintenance Manuals
- Annual Levee Inspections
- Periodic Inspections
- Google Earth Historic and Recent Aerials
- USACE Project Personnel
- Meet with the Project Sponsor
SURVEILLANCE TOOLS

• Cell phones
• Good Project Maps
 • Know your evacuation routes.
 • Know your nearest hospital location.
• Aerial Reconnaissance
 (Get on a helicopter whenever possible)
• GPS Cameras
• Rod and Level
• Measuring Tape
SURVEILLANCE TOOLS

- Lathe
- Markers
- Flagging / Spray Paint
- Life Jackets
- Safety Vests
- Binoculars
- Flash Lights
- Food and Water
- Bug Spray
- Sun Block
Flood Surveillance / Inspections

Riverside Slope & Levee Crest

- **Riverside Issues**
 - Levee freeboard – read staff gages
 - Erosion
 - High Water Velocities / Turbulent Flows
 - Penetrations

- **Crest Issues**
 - Overtopping
 - Cracking / Slides
Flood Surveillance/Inspections

Landslide Slope & Landslide Toe

- **Landslide Slope Issues**
 - Through Seepage / Piping
 - Rodent Holes
 - Depression at Structures
 - Crack / Slides

- **Landslide Toe and Adjacent Area**
 - Sand boils / Piping
 - Drainage Ditches
 - Slides

- **Relief Wells**

 Location

 Flow

 Boils
FLOOD SURVEILLANCE/INSPECTIONS

STAFF GAGES

Is the water level going up or down?

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Reading</th>
<th>Water Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Apr</td>
<td>8:00</td>
<td>84.3</td>
<td>Increasing</td>
</tr>
<tr>
<td>1-Apr</td>
<td>12:00</td>
<td>84.8</td>
<td></td>
</tr>
<tr>
<td>1-Apr</td>
<td>16:00</td>
<td>85.3</td>
<td></td>
</tr>
<tr>
<td>1-Apr</td>
<td>20:00</td>
<td>85.7</td>
<td></td>
</tr>
<tr>
<td>2-Apr</td>
<td>0:00</td>
<td>86.0</td>
<td></td>
</tr>
<tr>
<td>2-Apr</td>
<td>4:00</td>
<td>86.1</td>
<td></td>
</tr>
<tr>
<td>2-Apr</td>
<td>8:00</td>
<td>86.0</td>
<td></td>
</tr>
<tr>
<td>2-Apr</td>
<td>12:00</td>
<td>85.9</td>
<td></td>
</tr>
<tr>
<td>2-Apr</td>
<td>16:00</td>
<td>85.6</td>
<td></td>
</tr>
<tr>
<td>2-Apr</td>
<td>20:00</td>
<td>85.2</td>
<td></td>
</tr>
</tbody>
</table>

Is at a gage reading of 85.7
Top of water at this location
FLOOD SURVEILLANCE / INSPECTIONS

Underseepage-Boils
(Landside toe area primarily)

Flowing clear or moving material?
FLOOD SURVEILLANCE / INSPECTIONS

Slope Instability – Cracking
(Levee Crest Primarily)
FLOOD SURVEILLANCE/INSPECTIONS
DRAINAGE STRUCTURES, SEWERS, OR OTHER PENETRATIONS

- River
- Hoist
- Protected Side
- Flap Gate
- Sluice Gate
- Drop Inlet
FLOOD SURVEILLANCE/INSPECTIONS

CLOSURE STRUCTURES – ROADWAYS / RAILROAD CROSSINGS

Types: Swinging gates/frames-panels/earth berms/sand bags
When are they erected?-O&M Manual (River Stages, Weather Forecasts)
Surveillance - Monitor for Seepage
FLOOD SURVEILLANCE/INSPECTIONS

RELIEF WELLS/TOE DRAINS

Are they functioning?
(Monitor for Flow and Adjacent Boils)

Irrigation Well
DOCUMENTATION

- Document Conditions in the Field
 - Flagging, stakes, paint
 - Photos, videos
- Prepare Daily Reports
- Discuss issues to USACE Management and Levee Sponsors
- Post-flood Project Information Report (PIR) and Levee Repairs
QUESTIONS?